
The graphicsQC package

Quality Control for Graphics in R

Stephen Gardiner

Supervised by Dr. Paul Murrell

Department of Statistics
The University of Auckland

BSc(Hons) Project

November 2008

Abstract

The graphicsQC package is a new R package developed for extending Quality
Control for Graphics in R. It is capable of evaluating arbitrary code to produce
plots in different file formats, while recording information about them. Sets of
these plots are then able to be compared, with plots of differences produced
(when available). Lastly, information about these comparisons can be trans-
formed into an HTML report.

Contents

1 Introduction 2
1.1 Measuring software quality: QC and Regression testing 2
1.2 Existing QC functions in R . 3
1.3 An early attempt at QC for graphics in R 3
1.4 Outline of graphicsQC . 4

2 Plotting Arbitrary Expressions 5
2.1 Plotting expressions . 5
2.2 Plotting files and functions . 7
2.3 Logs of plots created . 8

2.3.1 The XML Language . 8
2.3.2 plotExpr() XML logs . 9
2.3.3 plotFile() and plotFunction() XML logs 9

3 Comparing plots 11
3.1 Comparing sets of expressions . 11

3.1.1 Binary vs. Text-based Formats 13
3.1.2 Pairing plots . 14
3.1.3 Comparing Warnings and Errors 14

3.2 Comparing sets of files and functions 14
3.3 Auto-detection of logs . 15
3.4 Extensibility for new file formats 16

4 Generating Reports 17
4.1 HTML Reports . 17

4.1.1 The XSL Language . 17
4.1.2 Transforming XML logs into HTML reports 18

5 A real example: grid 20
5.1 Plotting functions in the grid package 20
5.2 Comparing the grid functions . 20
5.3 Reporting on the differences in grid 21

6 Summary and discussion 26

Appendix A: Documentation 27

References 36

1

Chapter 1

Introduction

There has been much work into the concept of Quality Control for software
(Bourque and Dupuis). The R language and environment for statistical com-
puting and graphics (R Development Core Team, 2008; Ihaka and Gentleman,
1996) has tools which ensure that R code will run without catastrophic failure,
but fewer tools to check that the output from the code is correct, especially
graphics output. Thus, the aim of this research has been to establish new meth-
ods of ensuring Quality Control for graphics in R. The graphicsQC package
has been created for this, and this report aims to describe how the package
works, some features of it, and the reasoning behind some of the design choices.

In Chapter 2, the process of how plots are created and the steps taken to
record the plots and related information is described.

Chapter 3 describes how the comparison between sets of plots is performed
and how some extra features of the package provide for this.

Chapter 4 explains how reports are generated based on the comparisons.

1.1 Measuring software quality: QC and Re-
gression testing

Quality Control (QC), or testing, is used to ensure quality of the output of
software (as opposed to Quality Assurance (QA) which is involved with ensuring
the correctness of the process producing the output). It is focused on ensuring
that the software does not produce any errors (crash), and produces the correct
output. Specifically, QC is useful for the detection of problems (bugs). In terms
of graphics, assessing the correctness of output cannot (initially) be determined
without the use of an ‘expert observer’. The process of testing whether output
is correct or not will be referred to as validation.

Once initial, correct output, has been produced one can test future outputs
against this initial output. This type of testing is known as regression testing.
The initial output is referred to as control output. In the case where this control
output is known to be correct, that is if the graphics output has been validated,
then this control output will be referred to as model output. After this model
output has been created, changes to the source code of the software can be
made, and the output produced again. This second set of output is referred to
as test output. By comparing this test output against the control output, any

2

changes in the output can be identified. If there are no differences between the
two, the test output can be validated as being correct. If a change is expected,
then an expert observer is required to assess whether only the changes which
were expected occurred, and are correct. If this is the case, the test output now
becomes the control output for future testing.

1.2 Existing QC functions in R

There are currently a variety of methods used for quality control in R (Hornik,
2002). When writing packages, there is an R CMD check command which will
perform a multitude of quality control tests on a package (R Foundation for
Statistical Computing, 2008). Among these tests are checks of the output pro-
duced by the code. Any example code contained in the documentation of the
package is evaluated to ensure that it does not crash or produce any errors. If
a “tests” directory exists within the package, it will evaluate the code in any
.R files in the directory, making sure that they do not produce any errors or
crash, and then compare the output to corresponding .Rout.save files if they
exist. Lastly, it will evaluate code in any package vignettes if they exist, to
test that the code will not crash or produce any errors. This testing can be
manually performed on any package at any time, however this process is also
commonly automated. Examples of this exist on both the CRAN (The Com-
prehensive R Archive Network, http://CRAN.R-project.org/) and R-Forge
(http://R-forge.R-project.org/) websites, which both offer nightly checks
and builds of the packages they host.

At R’s core, there are also some hard-coded regression tests which can be run
from a ‘source’ distribution of R via the make check command. These mainly
consist of testing core elements, such as arithmetic tests, random number gen-
eration tests, and so on. They generally consist of a .R file containing test code
to be evaluated, with a corresponding .Rout.save file which contains model
output. There are however some graphics regression tests which are also run.
These involve running R code which will open a PostScript device and run code
which will produce some plots, and then use the GNU diff utility to compare
the plots to some supplied model .ps.save plots. This facility is hard-coded
into make check and is not performed by R CMD check. Thus the current level
of quality control for graphics in R is very limited and is available only for a few
predefined plots, and only when using a source distribution of R.

1.3 An early attempt at QC for graphics in R

An early attempt at graphics testing for R is a package similarly named
graphicsQC written by Murrell and Hornik (2003). It is essentially a proof-of-
concept package, and is very limited in usability and functionality. It is limited
to only running regression tests on the example code in given functions in R.
It does not record or return any information pertaining to the plots (such as
which directory the plots are being stored), and had very little error checking.
For most of the supported file formats, if any differences were detected, a vector
naming the test files with differences were returned, with no other information.
For the files in the png format, an xor operation is performed on the plots and

3

http://CRAN.R-project.org/
http://R-forge.R-project.org/

a difference plot produced which gives a visual representation of the difference
between the plots, however this is not supported for any other file format.

Due to these limitations, the package required a complete re-write to become
more useful. Some features necessitating this are the ability to plot any arbitrary
expressions, which can then be extended to plotting files and also examples from
functions. As this occurs, it would also be useful to appropriately record any
warnings which occur, and then possibly difference these as they may be useful
for discovering why plots differ. It is also necessary to be able to produce
plots highlighting the differences between two plots for all of the available file
formats. This is slightly in contrast with the previous implementation where the
plots were only of the differences between the plots, whereas it would be more
desirable to see the original plot, but with the differences highlighted. Another
necessary feature is the ability to record information relating to the plots, such
as which plots were created in which directory, which call created the plots, and
so on. The current graphicsQC package is a complete re-write of the previous
implementation.

1.4 Outline of graphicsQC

The nature of what’s required of the package reflects well with its design. The
first component of regression testing involves creating control output. This
is accomplished by one of the three functions plotExpr(), plotFile() and
plotFunction(). These evaluate and plot arbitrary expressions, code within
files, and example code from functions respectively. They also record ‘logs’ of the
information about the plots they produce both as R objects and in XML files,
including any warnings or errors that may have occurred. These functions are
used for the creation of both control and test output and are further described
in Chapter 2.

Once the control and test output have been created, they need to be com-
pared for differences. For this, there is the compare() function. The compare()
function will compare two sets of plots, for example two sets produced by
plotFunction(). It can compare using the R objects, or paths to the cor-
responding log files, or a mixture of these. It uses the GNU diff utility to do
the comparisons, which can be assumed on all of R’s supported platforms (R
Foundation for Statistical Computing, 2008). It compares the plots and any
warnings or errors for differences and then records the result of the comparison.
The compare() function is further described in Chapter 3.

Lastly, it may be desirable to report about the plots and the comparisons.
The function writeReport() accomplishes this by generating a HyperText Markup
Language (HTML) page of the results of any plotting or comparison result. It
is further discussed in Chapter 4.

4

Chapter 2

Plotting Arbitrary
Expressions

For graphical output to be produced, expressions, or code, must first be evalu-
ated. The ability to plot and test arbitrary code is a necessary feature in testing
graphical output, for example if a ‘user’1 wishes to test graphical output after
adding a new feature. It is imperative to store information related to plots
that are produced for aiding the ability to perform comparisons. When dealing
with code which produces graphical output, it is generally impossible to pro-
duce every possible output. Within R there are large amounts of example code
exhibiting how a function works and how to use it. This example code is used
to produce a sample of plots that can be produced by a given function.

2.1 Plotting expressions

For the task of evaluating arbitrary code to produce graphical output, the func-
tion plotExpr() was created. The main concept behind plotExpr() is to eval-
uate plotting code under chosen graphics devices and record which plots were
produced and other related information such as operating system, date, direc-
tory, R version and so on. It does this by initially error checking its arguments,
and then making a call to a function within the namespace, evalPlotCode().

The evalPlotCode() function is responsible for evaluating code after open-
ing an appropriate graphics device. It uses the tryCatch mechanism in R to
ensure that the function can continue evaluation if there is an error in the code
being evaluated. With the use of calling handlers, it is also able to ‘catch’
warnings and store them. If an error is encountered, this is also recorded and
evaluation of the current set of expressions is stopped. This is intentional be-
cause an error in the code is likely to be something serious which will affect
future expressions in the current set and possibly plots. However, if a warning
is encountered, the warning will be recorded and evaluation will continue. How
this information is recorded is discussed in Section 2.3.

The call to evalPlotCode() is made within plotExpr() using the lapply()
function. There are two advantages for this. First, the computation is

1The term ‘user’ here is used very loosely as it is likely to only be developers of R who
would make changes to the way graphical output is produced.

5

vectorised, which R has been optimised for. Secondly, it ensures that
evalPlotCode() gets called once for each file format for the expression, so any
warnings or errors are captured separately by filetype. This is because some
warnings may only occur on a certain graphics device and this ensures that
the devices are treated separately to each other. Using many file formats is a
distinct advantage in that all graphics formats can be tested against themselves
to help identify whether changes in graphics output are simply due to changes
in the code being evaluated, or whether there is a problem or change with a
specific graphics device.

A special case to consider when evaluating plotting code is any code which
will not actually produce any plots. Due the large variety of functions in R,
and the ability of users to create their own on the fly, it is unfeasible to deter-
mine whether code will produce plots without first evaluating it. So initially
evalPlotCode() will open the appropriate graphics device, evaluate the code,
and then close the device. If no plot is produced, this will leave a ‘blank’ image
in the chosen file format. These ‘blank’ images are not always blank in the
sense that some information is written to the file. This information differs by
file format and so the resulting sizes of files will be different. These plots are not
of interest when comparing plots as they do not represent a plot produced by R.
To deal with this, plotExpr() calls generateBlankImages() which generates
‘blank’ images in a temporary directory for the (supported) file formats which
produce ‘blank’ files of non-zero size. The plots that are produced are then
compared to these model ‘blank’ images, and removed if they are the same size,
that is, completely blank. However, warnings and errors are still recorded in
these situations.

A similar problem faced is that R cannot reliably determine how many plots
will be produced from a given set of expressions, and so it is difficult to establish
which plots were produced. The plots are named with a prefix according to what
is specified as the prefix argument, along with a numbered suffix to identify
each plot. That is, plots are created and then detected via the chosen prefix.
As a consequence, care must be taken when choosing a prefix for the plots
which is unique within a directory so that the plots that are created can be
distinguished from other files in the directory. The chosen directory to produce
plots in is checked prior to evaluating the code for any currently existing files
that might be created by the function. A clear argument to the function is
available which first clears the directory of any files with a name the same as
any that might be created.

Thus, the arguments to plotExpr are of the order, expr, which is a char-
acter vector (or an expression object) of the expressions to evaluate which may
produce graphical output. Next is filetype, which is used to specify which file
formats the expressions should be evaluated in. The argument path is the path
to place the plots and log file in. The prefix argument specifies the prefix to
use when naming the files, with the prefix being followed by a numbered suffix.
If files already exist in the chosen path and include names similar to those which
might be created, the clear argument specifies whether these files should be
removed before evaluating any code or not. The resulting log is given the class
qcPlotExprResult.

An example is given below.

> first <- plotExpr(expr = c("y <- 10", "x <- 1", "plot(x:y)"),

6

filetype = c("pdf", "png"),
path = "exampleDir",
prefix = "firstExample")

> first
plotExpr Result:
Call: plotExpr(expr = c("y <- 10", "x <- 1", "plot(x:y)"),
filetype = c("pdf", "png"), path = "exampleDir", prefix =
"firstExample")
R version: R version 2.6.2 (2008-02-08)
Directory: /home/stephen/graphicsqc/notes/report/exampleDir
Filename: firstExample-log.xml
Formats:
pdf : Plots: firstExample-1.pdf
png : Plots: firstExample-1.png

2.2 Plotting files and functions

A function for plotting arbitrary expressions has already been defined. It can be
seen that plotting files or functions is simply an extension of this, where multiple
files may each correspond to a different ‘expression’, and likewise for functions
where each function corresponds to a different expression. This is particularly
true for functions, where the plots for each function are generated by a single
call to example() of each function.

The two functions that provide these facilities are plotFile() and
plotFunction(). They both essentially consist of checking their argu-
ments, then generating multiple calls to plotExpr() for each file or func-
tion they are called with respectively. Thus the resulting logs contain lists
of qcPlotExprResult objects. These plotFile() and plotFunction() calls
are actually important in themselves as they need to refer to a grouping of
qcPlotExprResult objects. Thus they also contain their own set of informa-
tion similar to those stored in qcPlotExprResult objects. These results are
classed as qcPlotFileResult and qcPlotFunResult respectively.

Conceptually, this is easily extended to the ability to plot entire packages as
a qcPlotPackageResult would consist of multiple sets of qcPlotFileResult
and qcPlotFunResult objects. The ability to plot entire packages, for example
plotPackage(), is not yet entirely implemented, but a close approximation
can be made as shown in Chapter 5. The resulting class diagram is shown in
Figure 2.1

How the R objects are recorded as logs is described in the next section.
An example of plotting the barplot() function is given below.

> bplot <- plotFunction(barplot,
filetype = c("pdf", "ps", "png"),
path = "barplot")

The output from this example is not shown for brevity’s sake. A dynamically
generated report better shows this information and is described in Chapter 4.

7

qcPlotExprResult

+Information

+Plots: Warnings, Errors

qcPlotFi leResult

+Information

qcPlotFunctionResult

+Information

1..*

1

1..*

1

qcPlotPackageResult

+Information

*

1

*

1

Figure 2.1: Class diagram for ‘plot’ objects

2.3 Logs of plots created

When creating plots, it is very useful to store information about them. Primar-
ily, information such as which plots were produced in which file formats, and
which warnings or errors were generated within these file formats is of interest.
However information such as operating system, date, R version, and which call
was used to create the plots is also useful. All of this information cannot be
stored as a part of each plot, so a separate log file must be created.

As it is only text that needs to be stored, it makes sense to store this infor-
mation in a text-based format, especially as it will be easier to read log files in
the future. The logs were chosen to be stored using XML which is described
in the next section. In order to work with XML documents in R, the XML
package has been used (Temple Lang, 2001).

2.3.1 The XML Language

The eXtensible Markup Language (XML) is a markup language for documents
containing structured information (W3C, 2006a). It is extensible due to the
ability for users to define their own elements. It is an ‘open standard’ which
agrees with the open nature of R. Some of the main advantages for using XML
are its extensibility for user-defined elements, it is self-documenting, platform
independent, relatively human-legible, and internationally recognised. This al-
lows for great flexibility to store structured logs, as well as ease of reading in
stored logs. A disadvantage of XML is that it is very verbose, and so can take
up more disk space than if the log was stored using a binary format. This effect
is considered to be negligible however, since the disk space required for plots
will far outweigh the disk space required to store lists of their names in XML.

8

2.3.2 plotExpr() XML logs

The logs produced by plotExpr() consist of two parts. The first part consists
of information related to the plots, such as operating system, R version, date,
and call. The second part consists of the results of evaluating the code, such
as the plots produced by the code, listed by file format, including warnings or
errors.

The log created from Section 2.1 (firstExample-log.xml) is given below.

<?xml version="1.0"?>
<qcPlotExprResult>
<info>
<OS>unix</OS>
<Rver>R version 2.6.2 (2008-02-08)</Rver>
<date>Thu Nov 13 14:36:37 2008</date>
<call>
<![CDATA[

plotExpr(expr = c("y <- 10", "x <- 1", "plot(x:y)"), filetype =
c("pdf", "png"), path = "exampleDir", prefix =
"firstExample")]]>
</call>
<directory>/home/stephen/graphicsqc/notes/report/

exampleDir</directory>
<logFilename>firstExample-log.xml</logFilename>
</info>
<plots type="pdf">
<warnings/>
<error/>
<plot>firstExample-1.pdf</plot>
</plots>
<plots type="png">
<warnings/>
<error/>
<plot>firstExample-1.png</plot>
</plots>
</qcPlotExprResult>

The XML markup being used is fairly self-explanatory. Only 2 plots were
created; one in PDF and one in PNG, with neither having any warnings or
errors. It is worth pointing out that the log includes its own logFilename. This
is so the object in R knows where the file exists on disk.

Due to this completely open and platform independent way of storing this
information, the process can be taken out of R at any point. For example if the
user only wished to create the plots and then do something else with them, the
information is stored in an easily accessible format.

2.3.3 plotFile() and plotFunction() XML logs

As qcPlotFileResult and qcPlotFunResult objects are simply lists of
qcPlotExprResult objects with some extra information, the type of log
files they create reflect this structure. Both qcPlotFileResult and

9

qcPlotFunResult files contain an information section, followed by the paths
to all of the qcPlotExprResult files that they made. This is a more efficient
usage of disk space as all of the information in the qcPlotExprResult files
does not need to be repeated. It also has the advantage that no changes are
needed to plotExpr() as it can continue producing the logs it already does,
with plotFile() or plotFunction() only producing an extra log file to refer
to all the produced logs.

It is worth noting that the R representations of qcPlotFileResult and
qcPlotFunResult objects contain complete information, that is, all of the in-
formation contained in the sub-qcPlotExprResult objects as well.

The log file produced from the barplot() example in Section 2.2 is given
below.

<?xml version="1.0"?>
<qcPlotFunResult>
<info>
<OS>unix</OS>
<Rver>R version 2.6.2 (2008-02-08)</Rver>
<date>Thu Nov 13 14:36:38 2008</date>
<call>
<![CDATA[
plotFunction(barplot, filetype = c("pdf", "ps",

"png"), path = "barplot", clear = TRUE)]]>
</call>
<directory>/home/stephen/graphicsqc/notes/report/barplot

</directory>
<logFilename>barplot-funLog.xml</logFilename>
</info>
<qcPlotExprResult>/home/stephen/graphicsqc/notes/report/
barplot/barplot-log.xml</qcPlotExprResult>
</qcPlotFunResult>

Note that the qcPlotExprResult element consists only of the path to the
corresponding log file that contains information about the plots produced.

The naming of these qcPlotFileResult and qcPlotFunResult files requires
extra care when more than one file or function is specified. In the example
given above, the filename was barplot-funLog.xml, as only one function was
specified. If multiple files or functions are specified, the prefix used is chosen
to be the first element in the prefix vector. Any other choice will inevitably
result in a filename too long for the system.

10

Chapter 3

Comparing plots

In the case of quality control for graphics, it is not the code used to create the
graphics that is of importance, but rather whether the final output has changed.
Due to the nature of different file formats used for graphical output, comparisons
can only be made within the same file formats. The major differences between
some file formats are discussed in Section 3.1.1. There is also an issue of pairing
plots to be compared, for example if one function in a set of many includes a
new plot in the test group, the functions should still be pairwise compared, but
with the extra plot left out. How this is managed is described in Section 3.1.2.
Changes in warnings and errors can also provide clues as to why graphics output
has changed, so these are compared along with the appropriate plots as described
in Section 3.1.3.

3.1 Comparing sets of expressions

Once two sets of plots have been produced, it is desirable to compare them for
differences. The näıve approach is to display two plots side-by-side and visually
compare them for differences, repeating this for the entire set. This is both
ineffective and inefficient. It is very difficult for the human eye to discern small
differences in images, especially when there are large amounts of detail in both
images. It would also take a very long time if there were many plots.

A better solution involves using the GNU diff utility, which is assumed
to be supported on all of R’s supported platforms according to the R Coding
Standards (R Foundation for Statistical Computing, 2008). GNU diff compares
files to test if they are exactly the same. So once plots are appropriately paired,
they can be ‘diffed’, to identify which plots are identical or different and narrow
down which plots the user needs to examine. These differences may however still
be extremely difficult for the user to detect, or take a long time until the user
notices them. Because of this, ImageMagick software is also used. ImageMagick
provides a compare utility that is used to produce an image highlighting the
differences between two images. An example of this is given in Section 5.2.
This software is free (as in speech) so the source code is available for download,
and is distributed as standard on some GNU/Linux distributions. It is however
not necessary in order for compare() to work as primarily the differences are
detected using diff.

11

The compare() function handles comparisons between all supported sets of
expressions, for example between a qcPlotExprResult and a qcPlotExprResult
log, or between a qcPlotFileResult and a qcPlotFileResult log. The images
that highlight differences are created by default if ImageMagick is installed and
the plots are different. The erase argument to compare() specifies options for
removing test output after performing the comparison. If erase is set to “files”,
that is, delete all the plots in the test group (leaving only the log files), or set to
“all”, that is, delete everything in the test group, then the plots highlighting the
differences will not be produced. This is currently the only effect of the erase
option as it does not yet remove any files.

Comparing the example from Section 2.1 to itself should produce a result
indicating the plots are identical.

> firstComparison <- compare(first, first)

> firstComparison

qcCompareExpr Result:

Call:

compare(first, first)

Test Control Results

R version: R version 2.6.2 (2008-02-08) R version 2.6.2 (2008-02-08)

Directory: ...qc/notes/report/exampleDir ...qc/notes/report/exampleDir

Filename: firstExample-log.xml firstExample-log.xml

Format:

pdf ...mpleDir/firstExample-1.pdf ...mpleDir/firstExample-1.pdf identical

png ...mpleDir/firstExample-1.png ...mpleDir/firstExample-1.png identical

Note that this is not a particularly appealing way of presenting these results,
especially if there were many files compared. A more effective report can be
generated and is described in Chapter 4.

The results of comparing expressions are stored in XML logs in a similar
structure to the qcPlotExprResult objects. Each qcCompareExprResult log
contains its own information about what occurred, as well as information from
the test and control groups. The log file created from the ‘firstComparison’
example above is given below, with the information sections omitted for brevity’s
sake.

<compare type="pdf">
<comparison controlFile="/home/stephen/graphicsqc/notes/

report/exampleDir/firstExample-1.pdf"
testFile="/home/stephen/graphicsqc/notes/

report/exampleDir/firstExample-1.pdf">
<result>identical</result>
<diffFile></diffFile>
<diffPlot></diffPlot>
</comparison>
</compare>
<compare type="png">
<comparison controlFile="/home/stephen/graphicsqc/notes/

report/exampleDir/firstExample-1.png"
testFile="/home/stephen/graphicsqc/notes/

report/exampleDir/firstExample-1.png">
<result>identical</result>
<diffFile></diffFile>

12

<diffPlot></diffPlot>
</comparison>
</compare>
<unpaired>
<test/>
<control/>
</unpaired>

As there was only one set of files to compare for each filetype, there is only
one comparison element within each compare element. There were no unpaired
files and no differences in warnings or errors — these are further discussed in
Section 3.1.2 and Section 3.1.3 respectively.

The default placement of the log files and images highlighting the differences
are in the test directory, however this can be changed by specifying a different
path to the compare() function.

3.1.1 Binary vs. Text-based Formats

Image formats are either binary or text-based. The contents of images stored
in a binary format are generally not readable for humans, whereas text-based
formats are. When images are stored in a binary format, the files are relatively
large and limited to the resolution used at the time of saving. Murrell and Hornik
(2003) noted that the version of the third-party software used to view the image
can produce slightly different output, and even differences in hardware setup
(for example the platform being used). Currently the only supported binary
format is png (Portable Network Graphics).

Text-based formats tend to produce relatively small files at very high resolu-
tions, and are generally more platform-independent. A slightly different problem
faced with these formats is that it is possible to alter the file and have no visible
result on the final image. For example a change in the driver used to create the
image can change the internal structure of the file, but still produce the same
image. The currently supported text-based formats are ps (PostScript) and pdf
(Portable Document Format).

Due to these differences between file formats, it is beneficial to use multiple
formats. This is so each format can be tested against itself which helps identify
whether changes in graphics output are due to changes in the code used to
produce them, or whether there is a problem or change for a specific format.

The GNU diff utility provides a textual output of the differences between
files if they are different. For text-based formats, this information is useful and
is possible for someone with knowledge of the format to interpret. Due to nature
of binary formats, this is generally meaningless to humans. As such, when a
difference between two files is detected, if the files are a text-based format, a
.diff file is created giving the diff output of the differences, but this is not
created for binary formats.

There is a special case when comparing two files in the pdf format. Files
created in the pdf format contain some header information including the date
and time the file was created. When creating two separate plots, the time
each plot was created will inevitably be different from each other. As a result,
when files are compared for differences, this header section is ignored, and the
rest of the file is compared. If a difference is detected in the rest of the file,

13

the differences in headers are included in the resulting .diff file. Due to this
format dependent comparison, each format has its own function defined for how
to perform the comparison. This is further discussed in Section 3.4.

3.1.2 Pairing plots

When comparing plots produced by a set of expressions, it is important that
each of the plots in the test group is appropriately paired with its corresponding
plot in the control group. These pairings need to be done by file format as the
number of plots may be different depending on the format, for example if an
error prevented one format from producing some plots. It is also possible for
all filetypes to have unpaired files if for example an extra plot was included in
the test group and not in the control group. If the length of plots in a given
filetype in one group is greater than the other, the last plots that do not match
up are grouped into an ‘unpaired’ section that lists the plots that were unpaired
by filetype.

It is also possible for entire file formats to be unpaired, for example if the
control group consisted of plots only in the png format, whereas the test con-
sisted of png and pdf plots. When this occurs, these plots are included in the
‘unpaired’ section as well as any warnings or errors that occurred because it
is unknown whether these would have occurred under the same conditions as
the control group. These are also reported on separately when the report is
generated.

3.1.3 Comparing Warnings and Errors

When there are differences in the plots, differences in the warnings or errors
often provide clues as to why this may be. It has already been discussed in
Section 2.1 that warnings and errors are recorded when code is evaluated. When
the comparison between plots occurs, the warnings and errors for each filetype
are also compared. If the warnings or errors are not identical to each other, all
of the warnings or all of the errors (whichever had the difference) are reported
for both the test and control groups for the filetype being compared. It is then
up to the user to establish what the difference is. This is because ordering
in the warnings or errors could also prove significant in why plots differ. If
no differences between the warnings or errors are detected, then they are not
reported in the comparison.

3.2 Comparing sets of files and functions

Comparing sets of files and functions work in a similar to way to plotting files and
functions. The process is broken down into simpler, easier to manage chunks.
This results in sets of qcPlotExprResult objects being compared. Each file or
function corresponds to a single qcPlotExprResult, so these are just pairwise
compared. As in the case of comparing expressions, there is an issue of unpaired
files or functions. Currently, if one group contains more objects than the other,
the group with less objects will ‘recycle’ the elements until the groups have
the same number of objects to compare. A better option is to group these as
‘unpaired’, but this is not yet implemented.

14

When files and functions are compared, the comparison log file contains paths
to the individual qcCompareExprResult files much the same as occurred for
when files and functions were plotted. An example of a log file after comparing
the ‘bplot’ example to itself is given below.

> compareBplot <- compare(bplot, bplot)

<?xml version="1.0"?>
<qcCompareFunResult>
<info>
<OS>unix</OS>
<Rver>R version 2.6.2 (2008-02-08)</Rver>
<date>Thu Nov 13 14:36:39 2008</date>
<call>
<![CDATA[
compare(bplot, bplot)]]>
</call>
<path>/home/stephen/graphicsqc/notes/report/barplot</path>
<logFilename>barplot-compareFunLog.xml</logFilename>
<testLog>/home/stephen/graphicsqc/notes/report/barplot/

barplot-funLog.xml</testLog>
<controlLog>/home/stephen/graphicsqc/notes/report/barplot/

barplot-funLog.xml</controlLog>
</info>
<qcCompareExprResult>/home/stephen/graphicsqc/notes/report/

barplot/barplot+barplot-compareExprLog.xml
</qcCompareExprResult>
</qcCompareFunResult>

As there was only one function compared, there is only one qcCompareExprResult
listed. As for when files and functions are plotted, the R representation of this
contains complete information, so it will contain all of the information from the
listed qcCompareExprResult.

3.3 Auto-detection of logs

One of the features the package provides when comparing (and even report-
ing) sets is the ability to auto-detect log files. An example of this is if
two qcPlotFunResult objects needed to be compared, there are a couple
of ways of specifying the groups. If the objects were created in the cur-
rent R session, these can be given for the test and control arguments to
compare(). If they were not, one can specify the path of the directory that
contains the log file to compare to. The ‘most important’ log file will then
be searched for in the directory and read as an R object and returned, where
qcPlotFunResult and qcPlotFileResult objects are considered more impor-
tant than qcPlotExprResult objects as the former will contain several of the
latter. Objects of class qcPlotPackageResult would be considered most im-
portant, however these are not yet implemented. The way for specifying these
can be mixed-and-matched, for example the test group could be an R object

15

while the control group could be specified as the path to the file to compare.
This works as long as the resulting classes for test and control are the same,
for example a qcPlotFunResult and a qcPlotFunResult. If they are not, an
error is given. In the case where the log file is an ambiguous choice, an error is
also given, for example if the same folder was given for the test group and for
the control group, even if two separate files are detected, it is unclear which
should be the test group and which should be the control. An example of this
auto-detection in use is given in Section 5.2.

3.4 Extensibility for new file formats

In Section 3.1.1 it was briefly discussed why it is necessary to have format
dependent comparisons. As a result, each supported format has its own function
defined for how to carry out the comparison. The code has been designed so that
it is easy for developers to add new formats. The name of the function called to
compare two plots is based on the name of the format that is being compared.
For example if the current format was png, then the function that gets called to
perform the comparison is comparePNG(). That is, the word compare with the
format being compared in uppercase appended on, PNG. So if a new format were
to be supported by graphicsQC, the only change necessary for comparing the
format would be a new, appropriately named function.

The only changes necessary to include a new format for plotting are to add
the mapping of file format to device in evalPlotCode(), and to include the
format in a list of validFiletypes in getValidFiletypes().

16

Chapter 4

Generating Reports

Once plots and comparisons have been performed, the results are stored in XML
files. At this point, users of the package may wish to take the process entirely
out of R or do anything they like with them. One option is to dynamically
generate a report based on the plots or comparisons. As the data are stored
in XML files, there is a language defined that is useful for transforming XML
documents into other types of documents. This language, XSL, and how it is
used to transform the log files into HTML reports is described in the following
sections.

4.1 HTML Reports

Depending on the plots or comparisons performed, there is generally a large
amount of information to report on. The nature of how the log files are stored
reflects well with the natural nature of HTML where different pages are con-
nected to each other via links. For example qcPlotFunResult logs typically
refer to other qcPlotExprResult logs. They also refer to different plots, which
can be linked to and displayed within an HTML page. There is a very natural
way of transforming the log files from XML into HTML which is described in
Section 4.1.2. Web browsers are very widespread, so most users will be able to
view HTML pages.

4.1.1 The XSL Language

The eXtensible Stylesheet Language (XSL) is a functional language used to
define transformations of XML files into other formats (W3C, 2006b). This is
also sometimes referred to as XSLT. In XSL, styles, or templates, are created
defining how to display elements. The XML document is traversed, with the
appropriate templates applied to each element. It also makes use of the XPath
language to address separate parts of the XML document, which is particularly
useful when selecting nodes out of the order they are stored. The XSL lan-
guage provides the efficiency and tools necessary to transform the XML logs
into HTML reports.

17

4.1.2 Transforming XML logs into HTML reports

In order for the XML logs to be transformed into HTML reports, XSL stylesheets
must be provided to define the transformation. Stylesheets for all of the objects
produced by the graphicsQC package are distributed with the package. These
can be seen as being examples of a set of possible stylesheets, as the user of the
package is able to specify their own stylesheets to use for the transformation.

In order to use XSLT from within R, the Sxslt package is required (Temple
Lang, 2007). The package provides an interface to the libxslt translator, and also
allows XSLT to use R functions. Currently, the Sxslt package is not supported
on the Windows platform.

The function writeReport() generates an HTML report from its first ar-
gument, qcResult. The qcResult argument can be the result of any plot or
comparison generated by graphicsQC. If the function is given a ‘more impor-
tant’ object, for example a qcPlotFunResult object, it will produce an HTML
report for the current object, as well as all objects that the current object refers
to. This is because the page that is generated links to the sub-objects that are
referred to in case the user wishes to see more detail. That is, for every XML log
file that is referred to, a corresponding HTML file will be created with the same
name, but with the .html extension. The writeReport() function is flexible in
specifying which object to report on. It can accept either the R object, the path
to the log file, or even auto-detect from a directory. If a directory is given, first
any comparison log files are searched for, followed by log files created by plots,
in decreasing order of ‘importance’. Each object that is reported on has the
appropriate stylesheet applied, however the default stylesheets can be overwrit-
ten by specifying the path to the desired stylesheets by the xslStyleSheets
argument.

An example of the report generated from the ‘firstExample’ in Section 2.1
is given in Figure 4.1. Note that there was only one plot produced for two file
formats, with no warnings or errors. The table is sized appropriately for the
number of plots and includes warnings or errors if there are any. An example of
a report generated from a function comparison result is given in Section 5.3.

> writeReport(first)

18

Figure 4.1: Report on a qcPlotExprResult object.

19

Chapter 5

A real example: grid

In revision 44417 of R an anisotropy correction was added to how xsplines are
drawn. It was expected that this would only affect the binary formats (PNG),
but not the text-based formats (PostScript and PDF). The magnitude and scope
of the effects were also not known. The graphicsQC package was used to
compare revision 44417 of R against the previous revision, 44416, to establish
what effects this change might have had on the grid package.

5.1 Plotting functions in the grid package

As a plotPackage() function has not been implemented, the grid package
cannot be directly plotted. A close approximation is to simply plot all of the
functions exported by the package. This would have to be done under both
revisions of R as outputs from both will need to be compared. An example used
under revision 44417 is given below.

> grid44417 <- plotFunction(ls("package:grid"),
filetype = c("pdf", "ps", "png"),
path="~/tests/R44417")

With a similar command used in revision 44416, given below.

> grid44416 <- plotFunction(ls("package:grid"),
filetype = c("pdf", "ps", "png"),
path="~/tests/R44416")

5.2 Comparing the grid functions

Once both the test and control groups have been created, they can be tested for
differences. Revision 44416 is considered to be the control group, prior to the
change, and revision 44417 to be the test group. The comparison will be per-
formed under revision 44417, however the revision under which the comparison
is performed will not make a difference. As the R object for the control group is
in a different R session, the directory containing the control group can be given
for the control argument and auto-detect will find the correct log. Thus, to do
the comparison one could use a command such as that given below.

20

> gridCompare <- compare(test = grid44417,
control = "~/tests/R44416/")

5.3 Reporting on the differences in grid

As the comparison is complete, writeReport() can be used on the resulting
comparison object to generate an HTML report of the comparison. For example:

> writeReport(gridCompare)
[1] "/home/stephen/tests/R44417/absolute.size-compareFunLog.html"

which gives the path to the HTML report. Note that it has the prefix
“absolute.size” because that is the first function in the list of functions that
were compared.

Some of the output from the report can be seen in Figures 5.1, 5.2, 5.3, 5.4
and 5.5. It is worth noting that all of the links are active, so the user can view
reports from individual comparisons and the plots produced.

It was previously mentioned that some changes were expected. Some plots of
functions did exhibit some change in the png format as shown in Figure 5.2, but
not in other formats, as shown in the break-down of the arcCurvature() com-
parison in Figure 5.6. The seekViewport() function however had differences
in all three formats being tested, which was a completely unexpected result,
illustrating the usefulness of the graphicsQC package.

In Figure 5.7, the test and control group plots for the grid.xspline() func-
tion are both shown side-by-side. They were reported as having a difference,
but this might not be immediately obvious. The image highlighting the differ-
ences is given in Figure 5.8. The image shows that all of the curves have been
‘nudged’ down slightly. It has been discovered this effect is connected with the
users’ setup for their X windowing system. When X is set up properly, there
is no effect, but depending on on the X set up, the effect can be much more
noticeable. As to why seekViewport() had changes in formats other than png
is still being investigated.

The results of this example, including the generated report can be down-
loaded as a tarball from:
http://graphicsQC.R-Forge.R-Project.org/gridExample.tar.gz

21

http://graphicsQC.R-Forge.R-Project.org/gridExample.tar.gz

Figure 5.1: Information section of the grid comparison report.

Figure 5.2: Functions with different plots in the grid comparison.

22

Figure 5.3: Functions with identical plots in the grid comparison.

Figure 5.4: Functions with no plots produced in the grid comparison.

23

Figure 5.5: Differences in warnings, errors, and any unpaired plots in the grid
comparison.

Figure 5.6: Report of arcCurvature() comparison showing differences in the
png format, but not in the pdf or ps formats. This page is a result of clicking
on the “arcCurvature+arcCurvature” link in Figure 5.2.

24

Figure 5.7: Respective test and control plots from grid.xspline().

Figure 5.8: Differences in grid.xspline() between revisions.

25

Chapter 6

Summary and discussion

The graphicsQC package was developed to help ensure quality control for
graphics in R. It is capable of evaluating arbitrary code to produce plots based
on expressions, files, or examples from functions. It can then compare sets of
plots for differences, and produce images highlighting the differences if there
were any. HTML reports can be dynamically generated from the results of plots
or comparisons. All of the information related to plots and comparisons are
stored in an open format, allowing for the ability to read the information in
the future, and freedom of choice for users who may choose to report on the
information in a different way.

An example was given showing how the package has already been useful for
identifying both expected and unexpected changes in the graphics generated by
the grid package. The example also showed that the package is only useful for
detecting changes in graphics output, but cannot identify why changes occur.

There is still further work to be done in the graphicsQC package for im-
proving its ability to ensure quality control for graphics in R. Mainly, the ability
to plot and compare entire packages would greatly enhance the package’s us-
ability. Adding more graphics devices, and the ability to specify formats for
each graphic device to use would add more cases for the package to check, so
would be more useful in identifying changes. Both of these tasks have been
made easier as the style of coding used throughout the package has been to al-
low for extensibility. Lastly, extending the package to work on platforms other
than GNU/Linux to help ensure quality control for graphics in other platforms.
This is considered a more long-term goal as it is hindered by the XML package
which does not fully work on Mac OS, and by Sxslt which has not been ported
to MS Windows.

26

Appendix A

Documentation

The latest version of the package can be installed from within R via the following
command:

> install.packages("graphicsQC", repos="http://R-Forge.R-project.org")

Noting that the XML package is a dependency, so must also be installed, and
Sxslt must also be installed if HTML reports are desired.

The latest version of the package can also be downloaded in unix directly
from the Subversion repository, when issuing a command such as:

svn checkout svn://svn.r-forge.r-project.org/svnroot/graphicsqc

at the unix prompt.
To download the current revision at the time of printing (revision 60), the

following command can be used:

svn checkout --revision 60 svn://svn.r-forge.r-project.org/svnroot/graphicsqc

The rest of the in-R documentation follows on the next page.

27

Package ‘graphicsQC’ documentation
November 13, 2008

Type Package

Title Quality Control for Graphics in R

Version 0.9

Date 2008-11-13

Author Stephen Gardiner

Maintainer Stephen Gardiner <sgar060@aucklanduni.ac.nz>

Depends XML

Suggests Sxslt

Description The package provides functions to generate graphics files, compare them with
“model” files, and report the results.

License GPL-2

URL http://graphicsqc.r-forge.r-project.org

R topics documented:

graphicsQC-package . 28
plotExpr . 30
compare . 31
writeReport . 33

Index 35

graphicsQC-package Quality Control for Graphics

Description

Generates graphics files, compares them with ”model” files, and reports the results.

28

Details

Package: graphicsQC
Type: Package
Version: 0.9
Date: 2008-11-13
License: GPL-2

To generate files, use plotExpr, plotFile, or plotFunction. To compare sets of these, use
compare. To generate a report based on the comparison, use writeReport.

One possible way of using these functions is to create a set of plots in a directory in an old
version of R (say, the control group) using one of the plotting functions. Then to load a
new version of R and create the same plots in a different directory (say, the test group). A
comparison can then be done by specifying the control and test directories. Then a report
can be made on the comparison object.

It is highly recommended to use separate directories for the test and control. If the same
directory is used for both, all the prefixes in the test and all the prefixes in the control must
be unique, and auto-detect will not work if the same directory is given twice.

Author(s)

Stephen Gardiner

References

Free Software Foundation, Inc. 2008 Diffutils. http://www.gnu.org/software/diffutils/
diffutils.html

ImageMagick Studio LLC. 2008 ImageMagick. http://www.imagemagick.org/

Murrell, P. & Hornik, K. 2003 Quality Assurance for Graphics in R http://www.ci.
tuwien.ac.at/Conferences/DSC-2003/Proceedings/MurrellHornik.pdf.

See Also

plotExpr, plotFile, plotFunction, compare, writeReport

Examples

Not run:

Create some plots to compare (1st and 3rd plots have differences)

comp1 <- plotExpr(c("plot(1:10)", "plot(4:40)", "x<-3", "plot(2:23)"),

c("pdf", "ps"), "myPrefix", "comp1")

comp2 <- plotExpr(c("plot(1:11)", "plot(4:40)", "x<-3", "plot(5:15)"),

c("pdf", "ps"), "myPrefix", "comp2")

Compare them

compExpr <- compare(comp1, comp2)

Write a HTML report

writeReport(compExpr)

End(Not run)

29

plotExpr Plot arbitrary code

Description

Produce plots from R expression(s), function(s), or file(s) in specified file formats. An XML
file is also created which contains information about the plots produced.

Usage

plotExpr(expr, filetype = NULL, path = NULL, prefix = NULL,
clear = FALSE)

plotFile(filename, filetype = NULL, path = NULL, prefix = basename(filename),
clear = FALSE)

plotFunction(fun, filetype = NULL, path = NULL, prefix = fun,
clear = FALSE)

Arguments

expr character vector of R expressions which may or may not produce graphical
output.

filename the name of the file which the expressions are to be read from. The path is
assumed to be relative to the current working directory unless an absolute
path is given.

fun character vector naming the function(s) to plot or just the (named) func-
tion.

filetype character vector specifying file formats to produce the plots in (see details
for currently supported formats).

path character vector; path to produce output in. If not given, the current
working directory will be used.

prefix character vector; prefix for files produced. If multiple functions or files
are given, the resulting plotFile or plotFunction XML file will use the first
prefix.

clear logical (not NA); remove files with names we might use first. If clear is
FALSE and files exist with names we might use, an error is given.

Details

All functions evaluate the code they are given, capturing and recording any warnings and
errors. The code run for plotFunction is extracted from any example code (see example).

If an error is encountered when running a block of code, that particular block (say, a file
or function) will stop being executed for that filetype but the error will be recorded. If a
warning is encountered, the code will continue being evaluated.

The name for the log file is based on the first prefix and the type of function producing
the plots. For plotExpr XML logs, 1 log file will be produced with a name of the form
‘prefix-log.xml’. plotFile and plotFunction work by making multiple calls to plotExpr,
so will produce plotExpr logs (one for each file or function respectively), as well as their

30

own log, which will be named (using the first prefix) with the format ‘prefix-fileLog.xml’
and ‘prefix-funLog.xml’ respectively.

Currently supported file formats are ‘pdf’, ‘png’, and ‘ps’.

Value

A list of class qcPlotExprResult, qcPlotFileResult, or qcPlotFunctionResult respec-
tively. The list contains information about the environment creating the plots (Operating
System, R version, date, call), the names of the plots produced and any warnings/errors
produced.

Warning

Do not give any code that will open a graphics device (especially if that device is not closed).

See Also

compare, writeReport.

Examples

Not run:

plotExpr example:

example1 <- plotExpr(c("plot(1:10)", "plot(4:40)", "x<-3", "plot(2:23)"),

c("pdf", "ps"), "example1", "myPrefix")

There should now be a folder "example1" in the current

working directory containing pdf and ps files and myPrefix-log.xml, ie

list.files("example1")

plotFunction example:

example2 <- plotFunction(c("plot", "barplot", "hist"), c("pdf", "ps"),

path = "example2")

list.files("example2")

A bigger example:

require(grid)

gridExample <- plotFunction(ls("package:grid"), c("pdf", "png", "ps"),

path = "gridExample")

End(Not run)

compare Compare graphics output

Description

Compares plots/warnings/errors from plotExpr, plotFile, or plotFunction. For the text-
based formats (i.e. pdf or ps), a .diff file is created. If ImageMagick is installed, plots of
the differences will also be produced.

Usage

compare(test, control, path = test$info$directory,
erase = c("none", "identical", "files", "all"))

31

Arguments

test, control either:

� R objects of class qcPlotExpression, qcPlotFile, or qcPlotFunction.
� Character vectors of the paths to the respective files, where relative

paths are assumed unless an absolute path is given.
� Character vectors of the directories which contain the log files to

compare. The highest classed object in the folder will be chosen for
comparison (i.e. if a plotFunction log is in the directory and many
plotExpr logs, all of the plotExpr logs will be assumed to belong to
the plotFunction log).

The specification for test and control can be mixed and matched, as
long as the resulting objects are of the same class.

path character vector; specifies where all the diff output (.diff files, plots of
differences, and comparison logs) should be placed.

erase character vector; one of "none", "identical", "files", or "all".

"none" do not delete anything.
"identical" delete plots in the test directory which were identical.
"files" delete all plots (and .diff files) in the test directory (leaving

only the log files).
"all" delete all files created in the test directory and then the directory

if it is empty

Currently only "none" is fully supported.

Details

Plots are compared using gnu diff. If a difference is detected and the current filetype being
compared is a text-based format, a .diff file will be produced. If ImageMagick is installed,
plots of differences will also be created.

It is possible for some plots to appear say, in the test group, but not in the control group
(i.e. the function plot has an extra example plot in a new version of R). These such plots
are classified as ‘unpaired’. Unpaired files do not have a corresponding plot to compare
with so are separated into an unpaired section. It is also possible for entire filetypes to
be unpaired. Currently if there is a completely unpaired function or file when trying to
compare, recycling will be used. This is intended to change in the future.

In many instances, it is also useful to know whether there is any change in warnings or
errors. If any difference is detected in the warnings/errors for a filetype, all of the warnings
or errors (whichever had the difference detected) for that filetype are given. It is then up
to the user to decide what the difference is (i.e. whether the ordering has changed or if one
group has an extra warning etc.).

For each set of plot-logs being compared, a comparison log will be produced. So for each pair
of qcPlotExprResult logs being compared, a comparison log will be produced with a name of
the form ‘testPrefix+controlPrefix-compareExprLog.xml’. When comparing qcPlotFileRe-
sults or qcPlotFunctionResults there will also be a compareFileLog or compareFunLog pro-
duced which will take a name of the form ‘testPrefix+controlPrefix-compareFunLog.xml’,
where the testPrefix and controlPrefix are chosen from the first prefixes in the set of com-
pareExprLogs being compared (which in turn come from the first plotExpr logs). These
logs are placed in path.

32

Value

A list of class qcCompareExprResult, qcCompareFileResult or qcCompareFunResult con-
taining the results of the comparisons.

qcCompareExprResult files contain a list of info about the Operating System, R version,
date, call, the info from the test, info from the control, and then information about the
results of the comparisons (results by filetype giving the result, names of diff files and plots
of differences if produced), including any unpaired plots or filetypes (with corresponding
warnings/errors).

For qcCompareFile or qcCompareFun an initial info section is included, followed by a list
containing each individual qcCompareExprResult.

Note

gnu diff must be installed on the system. ImageMagick is not necessary, but greatly extends
functionality.

See Also

plotExpr, plotFile, plotFunction, writeReport

Examples

Not run:

Create sets to compare (1st and 3rd are different)

comp1 <- plotExpr(c("plot(1:10)", "plot(4:40)", "x<-3", "plot(2:23)"),

c("pdf", "ps"), "myPrefix", "comp1")

comp2 <- plotExpr(c("plot(1:11)", "plot(4:40)", "x<-3", "plot(5:15)"),

c("pdf", "ps"), "myPrefix", "comp2")

compExpr <- compare(comp1, comp2)

All the diff output has been placed in "comp1" (the test directory)

compExpr

For a better way of viewing this, see ?writeReport

End(Not run)

writeReport Generate a HTML report based on plots or comparisons

Description

Will produce a HTML report of the results from any of the qcPlot*, or qcCompare* results.

Usage

writeReport(qcResult, xslStyleSheets = NULL)

Arguments

qcResult one of:

� an R object of class qcPlot*, or qcCompare*.
� the path to the log file to report on

33

� a path to the directory, where the highest classed log file will be
auto-detected and then reported on (note that first comparison logs
are searched for, then plot logs).

xslStyleSheets

a named list specifying which XSL style sheets to override by giving
the name of the style sheet to override, and the location of the xsl file.
Can override any of: “plotExprStyleSheet”, “plotFunAndFileStyleSheet”,
“compareExprStyleSheet”, and “compareFunAndFileStyleSheet”. If none
are specified, the default (system) ones are used.

Details

When reporting on an object, all further qcPlot* or qcCompare* files which the current
object refers to are also reported on. This is so that full information reports can be given,
along with individual breakdowns. In order for this to happen, all log files that the object
currently being reported on refers to must exist, as well as any subsequent log files that
they refer to.

All reports are placed in the same directory as the XML file they refer to, with the same
name, except with the extension changed from ‘.xml’ to ‘.html’.

Value

A character vector giving the (absolute) path of the highest classed object reported on.
Comparison logs are considered higher classed than plot logs.

See Also

plotExpr, plotFile, plotFunction, compare.

Examples

Not run:

After running the `?compare' example

writeReport(compExpr)

Showing how to overwrite stylesheets

writeReport(compExpr, list(compareExprStyleSheet="~/myCompareExpr.xsl"))

End(Not run)

34

Index

∗Topic utilities
compare, 31
graphicsQC-package, 28
plotExpr, 30
writeReport, 33

compare, 29, 31, 31, 34
compareExpr (compare), 31
compareFile (compare), 31
compareFun (compare), 31

example, 30

graphicsQC (graphicsQC-package), 28
graphicsqc (graphicsQC-package), 28
graphicsQC-package, 28

plotExpr, 29, 30, 31, 33, 34
plotFile, 29, 31, 33, 34
plotFile (plotExpr), 30
plotFunction, 29, 31, 33, 34
plotFunction (plotExpr), 30
plotPackage (plotExpr), 30

writeReport, 29, 31, 33, 33

35

References

P. Bourque and R. Dupuis. Guide to the software engineering body of knowledge
2004 version. Guide to the Software Engineering Body of Knowledge, 2004.
SWEBOK, Chapter 11.

Kurt Hornik. Tools and strategies for managing software library repositories. In
Statistics in an Era of Technological Change, Proceedings of the 2002 Joint
Statistical Meetings, pages 1490–1493, 2002.

Ross Ihaka and Robert Gentleman. R: A language for data analysis and graphics.
Journal of Computational and Graphical Statistics, 5(3):299–314, 1996.

P. Murrell and K. Hornik. Quality assurance for graphics in R. In Proceedings of
the 3rd International Workshop on Distributed Statistical Computing, pages
20–22, Vienna, Austria, March 2003. ISSN 1609-395X. Edited by Hornik K.,
Leisch, F. & Zeileis, A.

R Development Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, 2008.
URL http://www.R-project.org. ISBN 3-900051-07-0.

R: Writing R Extensions. R Foundation for Statistical Computing, Vienna,
Austria, 2008. ISBN 3-900051-11-9.

Duncan Temple Lang. Using XML for statistics: The XML package. R News,
1(1):24–27, January 2001. URL http://CRAN.R-project.org/doc/Rnews/.

Duncan Temple Lang. Sxslt: R extension for libxslt, 2007. URL http://www.
omegahat.org/Sxslt,http://www.omegahat.org. R package version 0.7-0.

Extensible Markup Language (XML) 1.0. W3C (World Wide Web Consortium),
4th edition, 2006a. http://www.w3.org/TR/2006/REC-xml-20060816/.

Extensible Stylesheet Language (XSL) 1.1. W3C (World Wide Web Consor-
tium), 2006b. http://www.w3.org/TR/2006/REC-xsl11-20061205/.

36

http://www.R-project.org
http://CRAN.R-project.org/doc/Rnews/
http://www.omegahat.org/Sxslt, http://www.omegahat.org
http://www.omegahat.org/Sxslt, http://www.omegahat.org
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2006/REC-xsl11-20061205/

	report.pdf
	Introduction
	Measuring software quality: QC and Regression testing
	Existing QC functions in R
	An early attempt at QC for graphics in R
	Outline of graphicsQC

	Plotting Arbitrary Expressions
	Plotting expressions
	Plotting files and functions
	Logs of plots created
	The XML Language
	plotExpr() XML logs
	plotFile() and plotFunction() XML logs

	Comparing plots
	Comparing sets of expressions
	Binary vs. Text-based Formats
	Pairing plots
	Comparing Warnings and Errors

	Comparing sets of files and functions
	Auto-detection of logs
	Extensibility for new file formats

	Generating Reports
	HTML Reports
	The XSL Language
	Transforming XML logs into HTML reports

	A real example: grid
	Plotting functions in the grid package
	Comparing the grid functions
	Reporting on the differences in grid

	Summary and discussion
	Appendix A: Documentation
	graphicsQC.pdf

	References

